Pentagonal Planar AX₅ Species: Synthesis and Characterization of the Iodine(III) Pentafluoride Dianion, IF_5^{2-}

Karl O. Christe,^{*,‡,§} William W. Wilson,[‡] Greg W. Drake,[#] David A. Dixon,^{||} Jerry A. Boatz,[#] and Robert Z. Gnann[§]

Contribution from Hughes STX, Propulsion Directorate, Air Force Research Laboratory, Edwards Air Force Base, California 93524, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, and Pacific Northwest National Laboratory, Richland, Washington 99352

Received January 5, 1998

Abstract: The new IF_5^{2-} dianion, which is only the second known example of a pentagonal planar AX₅ species, was prepared as its N(CH₃)₄⁺ salt from N(CH₃)₄IF₄ and N(CH₃)₄F in CH₃CN solution. Its structure was established by infrared and Raman spectroscopy, ab initio calculations, and a comparison to isoelectronic XeF₅⁻. Furthermore, vibrational spectroscopy and X-ray powder diffraction data show that the previously reported composition "Cs₃IF₆" is actually a mixture of Cs₂IF₅ and CsF. Ab inito calculations also show that the most probable geometries for the free IF₆³⁻ ion are vibrationally unstable and undergo spontaneous F⁻ ion loss with formation of either pentagonal planar IF₅²⁻ or square planar IF₄⁻. The synthesis and some properties of the new N(CH₃)₄IF₄ salt and a revised normal coordinate analysis of XeF₅⁻ are also presented.

Introduction

In 1991, the synthesis and characterization of the XeF₅⁻ anion was reported.¹ This anion is highly unusual as it is the only known example of a pentagonal planar AX₅ species. In our search for additional representatives of this class, it was noted that the Raman spectrum of a sample² having the analytical composition Cs_3IF_6 closely resembled that of $CsXeF_5$. As the unknown IF_5^{2-} is isoelectronic with XeF_5^{-} and is likely to be isostructural, we suspected that the previously reported "Cs3-IF₆" composition might actually be a mixture of CsF and Cs₂-IF₅. Fortunately, the original sample of "Cs₃IF₆" had been preserved in our laboratory for 25 years and showed no signs of deterioration. Therefore, this sample was reinvestigated as it could possibly contain a pentagonal planar IF_5^{2-} dianion. Unfortunately, both CsF and the cesium salt of the multiply charged anion present in the "Cs₃IF₆" sample were found to be insoluble in all available chemically inert solvents, thus preempting either their separation by extraction methods or the identification of the multiply charged anion by methods such as multinuclear NMR spectroscopy or growing of a single crystal for X-ray diffraction. It was therefore desirable to synthesize soluble IF₄⁻ and F⁻ salts containing a common cation, which would allow the determination of the true combining ratio of IF_4^- with F^- . A comparison of the vibrational spectra of the resulting product with those of "Cs₃IF₆" should then also permit a positive indentification of the anion present in "Cs₃IF₆".

[‡] Hughes STX.

Experimental Section

The original² Cs₃IF₆ sample, prepared by the combination of CsF and IF₃ in a 3:1 mol ratio in a CFCl₃ suspension at -78 °C,^{3,4} was used in this study. The preparation of IF₃,³ anhydrous N(CH₃)₄F,⁵ and XeF₂⁶ has previously been described. The purity of the IF₃ was checked by its low-temperature Raman spectum, which was in excellent agreement with a previous report.⁷ The N(CH₃)₄I (K & K Labortories, Inc.) was used as received. The CH₃CN (J. T. Baker, bioanalyzed, low water) was dried over P₂O₅ prior to its use. The volatile fluorine compounds were handled in a stainless steel Teflon-FEP vacuum line, similar to one previously described.⁸ The CH₃CN was handled in a flamed out Pyrex glass vacuum line equipped with Kontes Teflon valves and a Heise pressure gauge.

Infrared spectra were recorded on a Perkin-Elmer Model 283 spectrophotometer with use of AgCl disks prepared by pressing the finely powdered sample between two thin AgCl plates in a Barnes Engineering minipress inside the glovebox. An AgCl blank was placed into the reference beam to compensate for the absorption of the window material. Raman spectra were recorded on either a Cary Model 83GT, a Spex Model 1403, or a Bruker Equinox 55 spectrophotometer by using the 488 nm exciting line of an Ar ion laser, the 647.1 nm line of a Kr ion laser, or the 1064 nm line of a neodymium vag laser. respectively. ¹⁹F NMR spectra were recorded at 84.24 MHz on a JEOL FX902 multinuclear instrument between +30 and -30 °C, using CH₃-CN as a solvent and d₆-acetone/CFCl₃ as an external lock substance and standard. The DSC data were recorded on a DuPont Model 910 DSC. A DuPont Model 2000 Thermal Analyst was used for recording and analyzing the data. The samples were crimp sealed in aluminum pans inside the drybox and heated at a rate of 2 °C/min.

Synthesis of $N(CH_3)_4IF_4$. Inside the drybox, $N(CH_3)_4I$ (2.163 mmol) and XeF₂ (4.327 mmol) were combined in a prepassivated (with ClF₃) Teflon FEP, 0.75 in. o.d. Teflon FEP U-tube which was closed with two stainless steel valves. On the glass vacuum line, CH₃CN (10 mL,

[§] University of Southern California.

^{II} Pacific Northwest National Laboratory.

[#] Propulsion Directorate, Air Force Research Laboratory.

⁽¹⁾ Christe, K. O.; Curtis, E. C.; Dixon, D. A.; Mercier, H. P.; Sanders, J. C. P.; Schrobilgen, G. J. J. Am. Chem. Soc. **1991**, 113, 3351.

⁽²⁾ Christe, K. O.; Naumann, D. Inorg. Chem. 1973, 12, 59.

⁽³⁾ Schmeisser, M.; Ludovici, W.; Naumann, D.; Sartori, P.; Scharf, E.

Chem. Ber. **1968**, 101, 4214. (4) Schmeisser, M.; Sartori, P.; Naumann, D. Chem. Ber. **1970**, 103, 590

⁽⁵⁾ Christe, K. O.; Wilson, W. W.; Wilson, R. D.; Bau, R.; Feng, J. J. Am. Chem. Soc. **1990**, 112, 7619 and references therein.

⁽⁶⁾ Frlec, B.; Holloway, J. H. J. Chem. Soc. Dalton 1975, 535.

⁽⁷⁾ Schmeisser, M.; Naumann, D.; Lehmann, E. J. Fluorine Chem. 1973/ 74. 3, 441.

⁽⁸⁾ Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Synth. 1986, 24, 5.

liquid) was added at -196 °C, and the mixture was warmed to -31 °C. After 8 h, all gas evolution had ceased, and the amount of gas volatile at -78 °C (2.1 mmol of Xe) was measured. A white solid had formed in the bottom of the tube, which was identified as N(CH₃)₄-IF₂.⁹ Upon warming of the mixture to room temperature, the yellowish CH₃CN solution turned more orange and additional gas evolved. After 1.5 h at 20 °C, the gas evolution (2.13 mmol of Xe) was complete, resulting in a white solid and clear orange-yellow solution. All volatile material was pumped off at room-temperature, leaving behind 602 mg of a white solid (weight calcd for 2.163 mmol of N(CH₃)₄IF₄ = 599.4 mg) which was identified by vibrational and NMR spectroscopy as N(CH₃)₄IF₄.

 $N(CH_3)_4IF_4$ was also prepared by the reaction of stoichiometric amounts of $N(CH_3)_4F$ and IF_3 in CH_3CN solution at -31 °C. However, this synthesis is inferior to the one described above.

Synthesis of [N(CH₃)₄]₂IF₅. Inside the drybox, N(CH₃)₄IF₄ (0.58 mmol) and N(CH₃)₄F (0.72 mmol) were loaded into a prepassivated, 0.75 in. o.d., Teflon-FEP ampule that contained a Teflon-coated magnetic stirring bar and was closed by a stainless steel valve. On the glass line, dry CH₃CN (7.2 mL) was added at -196 °C and the mixture was stirred for 18 h at -31 °C. The solvent was pumped off for 14 h, first at -31 °C and during the last stages at room temperature, resulting in a white dry solid (227 mg, weight calculated for 0.58 mmol of [N(CH₃)₄]₂IF₅ plus 0.14 mmol of N(CH₃)₄F = 228 mg) that was shown by vibrational spectroscopy to consist mainly of [N(CH₃)₄]₂IF₅, containing a small amount of unreacted N(CH₃)₄IF₄ and the excess of N(CH₃)₄F used in the reaction.

Theoretical Calculations. Electronic structure calculations were done at the local density functional theory (LDFT) level^{10,11} with a polarized valence double- ζ basis set (DZVP),¹² and at the Hartree–Fock (HF) level¹³ with an effective core potential (ECP)¹⁴ on I for the core electrons and with a polarized double- ζ basis set for the valence electrons, and with an all electron polarized double- ζ valence set on

(9) Christe, K. O.; Wilson, W. W.; Drake, G. W.; Petrie, M. A.; Boatz, J. A. J. Fluorine Chem. In press.

(10) (a) Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules. Oxford University Press: New York, 1989. (b) Labanowski, J.; Andzelm, J., Eds. Density Functional Methods in Chemistry; Springer-Verlag: New York, 1991. (c) Ziegler, T. Chem. Rev. **1991**, 91, 651. (d) Salahub, D. R. In Ab Initio Methods in Quantum Chemistry; Lawley, K. P., Ed.; J. Wiley & Sons: New York, 1987; Vol. II, p 447. (e) Jones, R. O.; Gunnarsson, O. Rev. Mod. Phys. **1989**, 61, 689.

(11) Vosko, S. J.; Wilk, L.; Nusair, W. *Can. J. Phys.* **1980**, *58*, 1200. (12) Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. *Can. J. Chem.* **1992**, *70*, 560.

(13) (a)Hirst, D. M. A Computational Approach to Chemistry; Blackwell Scientific: Oxford, 1990. (b) Grant, G. H.; Richards, W. G. Computation Chemistry; Oxford University Press: Oxford 1995. (c) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; John Wiley and Sons: New York, 1986.

John Wiley and Sons: New York, 1986. (14) Hay, P. J.; Wadt, W. R. J. Chem. Phys. **1985**, 82, 270, 284, 299. (15) Dunning, T. H., Jr.; Hay, P. J. In Methods of Electronic Structure Theory; Schaefer, H. F., III., Ed.; Plenum Press: New York, 1977; Chapter 1.

(16) (a)Komornicki, A.; Ishida, K.; Morokuma, K.; Ditchfield, R.; Conrad, M. Chem. Phys. Lett. **1977**, 45, 595. (b) McIver, J. W., Jr.; Komornicki, A. Chem. Phys. Lett. **1971**, 10, 202. (c) Pulay, P. In Applications of Electronic Structure Theory; Schaefer, H. F., III, Ed.; Plenum Press: New York, 1977; p 153.

(17) Komornicki, A.; Fitzgerald, G. J. Phys. Chem. 1993, 98, 1398 and references therein.

(18) (a) Andzelm, J.; Wimmer, E.; Salahub, D. R. In *The Challenge of d and f Electrons: Theory and Computation;* Salahub, D. R., Zerner, M. C., Eds; ACS Symp. Ser., No 394; American Chemical Society: Washington D.C., 1989; p 228. (b) Andzelm, J. In *Density Functional Theory in Chemistry;* Labanowski, J., Andzelm, J., Eds.; Springer-Verlag: New York, 1991; p 155. (c) Andzelm, J. W.; Wimmer, E. J. Chem. Phys. **1992**, *96*, 1280.

(19) Gaussian 94, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Peterson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc.: Pittsburgh, PA, 1995.

Table 1. ¹⁹F Chemical Shifts for Binary Halogen Fluoride Anions

oxidation state of central atom			
+I +III +V +VII	$\begin{array}{c} \mathrm{IF}_2^282^a \\ \mathrm{IF}_4^106^b \\ \mathrm{IF}_6^- 13^c \\ \mathrm{IF}_8^- 249^d \end{array}$	$\frac{\mathrm{BrF_4}^{-}-37^{e}}{\mathrm{BrF_6}^{-}94^{e}}$	$\mathrm{ClF_4}^-$ 67 e

^{*a*} Reference 9. ^{*b*} This work and ref 23. ^{*c*} Reference 25. ^{*d*} Reference 26. ^{*e*} Reference 22.

F.¹⁵ Geometries were optimized by using analytical methods.¹⁶ Analytic second derivatives were calculated at the optimized LDFT geometries.¹⁷ Numerical second derivatives were calculated at the Hartree–Fock level by using a two-point differencing scheme. The LDF calculations were done with DGauss,¹⁸ and the HF calculations were done with Gaussian 94.¹⁹ The calculated Hessian matrices (second derivatives of the energy with respect to Cartesian coordinates) were converted to symmetry-adapted internal coordinates for further analysis with the program systems GAMESS²⁰ and Bmtrx.²¹

Results and Discussion

Synthesis and Properties of $N(CH_3)_4IF_4$. As already pointed out in the Introduction, the determination of the combining ratio of IF_4^- with F^- required the availability of soluble salts of these two anions with a common counterion. Since $N(CH_3)_4F^5$ and $N(CH_3)_4XF_4$ (X = Br or Cl)²² were known to have good solubility in CH₃CN, the $N(CH_3)_4IF_4$ salt appeared to be an ideal candidate for our reactions. Our first attempts to prepare this salt from $N(CH_3)_4F$ and IF_3 in CH₃CN solution at -31 °C produced only impure products. Subsequently, the following improved synthesis (eq 1) gave very pure $N(CH_3)_4$ -

$$N(CH_3)_4I + 2XeF_2 \xrightarrow{CH_3CN} N(CH_3)_4IF_4 + 2Xe$$
 (1)

IF₄, eliminated the need for the thermally unstable IF₃, which is difficult to purify,^{3,4} and utilized only commercially available starting materials. It is similar to the one previously reported²³ for 1,1,3,3,5,5-hexamethylpiperidinium (pip⁺)IF₄⁻ from pip⁺F⁻, iodine, and XeF₂, but offers the advantages of avoiding a 7-step, 14% yield synthesis of pip⁺F⁻ and the handling of volatile elemental iodine.

N(CH₃)₄IF₄ is a white crystallinic solid which, based on DSC data and vibrational spectra, undergoes a reversible endothermic phase change of 21.8 J/g at 73.8 °C and irreversible exothermic decomposition at 284 °C. The surprisingly high thermal stability of this compound is in marked contrast to that of pip⁺IF₄⁻, which was reported²³ to be unstable above 0 °C.

The ¹⁹F NMR spectra of N(CH₃)₄IF₄ in CH₃CN solution were recorded at -30 and 30 °C and consisted of broad singlets at δ = -106.5 with half widths of 385 and 1061 Hz, respectively. The observed chemical shift is in excellent agreement with the value of -106 ppm, previously reported²³ for pip⁺IF₄⁻ in CH₃-CN at -20 °C. The chemical shift of IF₄⁻ fits nicely the trends observed for other halogen fluoride anions,^{25,26} i.e., the shielding of the fluorine ligands decreases with increasing oxidation state

(22) Wilson, W. W.; Christe, K. O. Inorg. Chem. 1989, 28, 4172.

(23) Zhang, X.; Seppelt, K. Z. Anorg. Allg. Chem. 1997, 623, 491.
(24) Mahjoub, A. R.; Zhang, X.; Seppelt, K. Chem. Eur. J. 1995, 1, 261.

(25) Christe, K. O.; Wilson, W. W. Inorg. Chem. 1989, 28, 3275.

(26) Christe, K. O.; Sanders, J. C. P.; Schrobilgen, G. J.; Wilson, W. W. J. Chem. Soc., Chem. Commun. **1991**, 837.

⁽²⁰⁾ Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. **1993**, *14*, 1347.

⁽²¹⁾ Bmtrx version 2.0; Komornicki, A.; Polyatomics Research Institute: Palo Alto, CA, 1996.

	Table 2.	Observed and	Calculated	Vibrational	Spectra	of IF ₄ -
--	----------	--------------	------------	-------------	---------	----------------------

					obsd freq, cm^{-1} (rel int) ^{<i>a</i>}				calcd freq, cm^{-1} (IR int) ^b		
assgnts and approx mode descriptions in point group D_{4h}			CsIF ₄		$N(CH_3)_4IF_4^d$		HF/ECP/DZP		LDFT/DZVP		
			IR	RA	IR	RA	unscaled	scaled ^c	unscaled		
Ra	A _{1g}	ν_1	ν sym in phase		522(10)		515(10)	559(0)	520	495(0)	
IR	A_{2u}	ν_2	δ umbrella	271 ms		267 ms		326(78)	277	255(40)	
Ra	B_{1g}	ν_3	ν sym out of phase		455(7.2)		457(5.6)	493(0)	458	449(0)	
Ra	B_{2g}	ν_4	δ scissor		195(0+)		197(0.5)	225(0)	191	167(0)	
	B_{2u}	ν_5	δ pucker					185(0)	157	140(0)	
IR	E_u	ν_6	ν asym	448 vs		449 vs		481(951)	447	501(544)	
		ν_7	δ asym	not obsd		not obsd		139(3)	118	115(3)	

^{*a*} Data for CsIF₄ from ref 2 and for N(CH₃)₄IF₄ from this study. ^{*b*} Infrared intensities in km/mol. ^{*c*} Empirical scaling factors of 0.9294 and 0.8490 for the stretching and deformation modes, respectively, were used to maximize the fit between the observed and calculated frequencies. ^{*d*} In addition to the above listed IF₄⁻ bands, the following bands due to N(CH₃)₄⁺ were observed: IR 3118 sh, 3040 w, 2969 vw, 1490 mw, 1444 w, 1416 mw, 1287 w, 952 m, 922 w, 462 m; Ra 3021(0.7), 2969(0.2), 2942(0.4), 2907(0.1), 2800(0.1), 1471(0.6), 1461(0.7), 1413(0.3), 1284(0.1), 1175(0.15), 1168(0.1), 947(1.5), 754(1.5), 450 sh on the intense 457 IF₄⁻ band, 369(0.2).

and electronegativity of the central atom (see Table 1). Pronounced line broadening with increasing temperature was also observed for BrF_4^- and ClF_4^{-} .²⁶

The infrared and Raman spectra of $N(CH_3)_4IF_4$ are summarized in Table 2. The bands observed for the IF_4^- part of $N(CH_3)_4IF_4$ agree well with those previously reported for $CsIF_4$,² but not with those (Ra: 573.5, 461, and 213 cm⁻¹) previously listed²³ for pip⁺IF₄⁻. Particularly, the value of 573.5 cm⁻¹, reported for $v_1(A_{1g})$ of pip⁺IF₄⁻, is outside the expected (see Computional Results below) range and is probably incorrect. The bands due to the $N(CH_3)_4^+$ cation have been summarized in a footnote of Table 2. They are in excellent agreement with those previously reported for other $N(CH_3)_4^+$ salts^{1,5,9} and, therefore, do not require further discussion.

Synthesis and Properties of $[N(CH_3)_4]_2IF_5$. The combination of $N(CH_3)_4IF_4$ with a slight excess of $N(CH_3)_4F$ in CH₃-CN solution at -31 °C produced the desired $[N(CH_3)_4]_2IF_5$ (eq 2).

$$N(CH_3)_4 IF_4 + N(CH_3)_4 F \xrightarrow{CH_3 CN}_{-31 \,^\circ C} [N(CH_3)_4]_2 IF_5$$
 (2)

Prolonged reaction times (about 20 h) and stirring resulted in an almost quantitative conversion of IF_4^- to IF_5^{2-} , thus establishing the 1:1 combining ratio between IF_4^- and F^- . In the presence of a large excess of F^- ions, no further fluoride ion uptake and, hence, no formation of IF_6^{3-} were observed. Attempts to carry out reaction 2 in CHF₃ solution at -78 °C were unsuccessful and only unreacted N(CH₃)₄IF₄ was recovered.

The $[N(CH_3)_4]_2IF_5$ salt is a white solid that is stable at room temperature. It has very little solubility in solvents, such as CH₃CN, which precluded its characterization by NMR spectroscopy and the growing of single crystals for a crystal structure determination. Infrared and Raman spectra of the solid were used for its characterization. They are given in Figure 1 and Table 3, and their assignments are discussed below in more detail.

Characterization of Cs₂IF₅. In the original report² on "Cs₃-IF₆", the true combining ratio of IF₃ with CsF had not been established. An arbitrary 1:3 ratio of the starting materials had been used, and since both CsF and Cs₂IF₅ are insoluble, the products could not be separated and, therefore, by necessity had the analytical composition Cs₃IF₆.

In the reaction of IF_4^- with an excess of fluoride ions, the logical first step is the addition of one fluoride ion with formation of IF_5^{2-} . The addition of a second fluoride ion with formation of an IF_6^{3-} trianion becomes less likely since the Lewis acidity of the parent anion decreases with the addition

FREQUENCY, cm⁻¹

Figure 1. Infrared and Raman spectra of solid $[N(CH_3)_4]_2IF_5$. The bands masked by asterisks and diamonds are due to IF_4^- and $N(CH_3)_4^+$, respectively, while those marked by frequency values belong to IF_5^{2-} .

of each F^- ion. Although, based on these arguments, the formation of IF_5^{2-} is clearly favored over that of IF_6^{3-} , it previously had not been given much consideration due to the absence of any other AX_5E_2 species containing two free valence electron pairs (E) on A. This picture, however, has changed recently with the synthesis of surprisingly stable XeF_5^- salts.¹

Our reinvestigation of the original² "Cs₃IF₆" sample showed that it is indeed a mixture of Cs₂IF₅ and CsF, based on the following evidence:

(i) X-ray powder data: The previously published powder pattern of "Cs₃IF₆" (Table II of ref 2) shows all the lines characteristic²⁷ for CsF (d (Å), intensity: 3.4 ms, 3.03 mw, 2.106 mw, 1.801 mw, 1.735 vw, 1.496 w, 1.370 w, 1.336 mw, 1.223

Table 3. Observed and Calculated Vibrational Spectra of IF_5^{2-} Compared to Those Observed for XeF_5^{-}

						${\rm IF_{5}}^{2-}$				XeF	$r_5 - a$	
				obsd	l freq, cm^{-1} (i	rel int)	calcd freq $cm^{-1}(IR int)^{f}$		obsd freq, cm^{-1} (rel int)			nt)
assgnts and approx mode descriptions in point group D_{5h}		Cs ₂ IF ₅	$[\mathrm{N}(\mathrm{CH}_3)_4]_2\mathrm{IF}_5{}^b$		HF/ECP/DZP		CsXeF ₅		N(CH ₃) ₄ XeF ₅			
		RA	IR	RA	unscaled	scaled ^e	IR	Ra	IR	Ra		
Ra IR IR	$\begin{array}{c} A_1'\\ A_2''\\ E_1' \end{array}$	$\nu_1 \\ \nu_2 \\ \nu_3$	ν sym δ umbrella ν asym	478(10)	(—) ^c 335 vs, br	474(10)	487(0) 320(97) 356(588)	468 307 342	274 s 450 vs 415 s	504(10)	278 s 509 sh 465 vs 420 sh	502(10)
Ra	E ₂ '	$rac{ u_4}{ u_5}$	δ asym in plane ν asym δ asym in plane	339(2) 325(1.6) 396(0.9)	245 w	322(3.8) (366) ^d	259(14) 349(0) 381(0)	249 335 366	288 sh	432(1.5) 422(1.6) 380(2.2)		423(2.1) 377(3.3)
Ra	$E_2^{\prime\prime}$	ν_7	δ pucker				104(0)	100		369(2.3)		

^{*a*} Data from ref 1. ^{*b*} In addition to the above listed IF₅²⁻ bands, the following bands due to N(CH₃)₄⁺ were observed: IR 3034 ms, 1507 ms, 1415 w, 1255 m, 963 s, 467 m; Ra 3010(1.3), 2943(0.8), 2810(0.4), 1478(1.8), 952(1.8), 751(3.0), 460(sh), 366(1.0). ^{*c*} This band is masked by the very intense broad band at 335 cm⁻¹. ^{*d*} This band is obscured by the relatively intense 366 cm⁻¹ N(CH₃)₄⁺ band. ^{*e*} An empirical scaling factor of 0.9606 was used to maximize the fit between observed and calculated frequencies. ^{*f*} Ir intensities in km/mol.

Figure 2. Raman spectrum of Cs₂IF₅.

w, 1.153 w) and leaves no doubt that " Cs_3IF_6 " contains a very significant amount of free CsF.

(ii) Infrared spectrum: The infrared spectrum of "Cs₃IF₆" was rerecorded and compared to that of CsF taken under the same conditions. It was found that the major absorption in both spectra was a very intense and broad band at 298 cm⁻¹ due to CsF, which in the "Cs₃IF₆" case confirms the presence of free CsF but obscures the less intense IF₅²⁻ bands.

(iii) Raman spectrum: A higher quality Raman spectrum, which did not suffer from fluorescence,² was obtained by means of 1064 nm excitation with a neodymium yag laser and is shown in Figure 2. The dominant Raman bands at 478, 396, 339, and 325 cm⁻¹ are in excellent agreement with those of IF_5^{2-} in $[N(CH_3)_4]_2IF_5$ (see Table 3) and leave no doubt that the dominant anion in "Cs₃IF₆" is IF₅²⁻. For a hypothetical IF₆³⁻ anion, the additional fluoride ligand and extra formal negative charge should cause a different band pattern and significant shifts to lower frequencies. In addition to the intense IF_5^{2-} bands, the "Cs₃IF₆" spectrum showed several very weak bands which can be assigned to likely impurities, such as IF_7^{2-} (556 and 454 cm⁻¹) or IOF_5^{2-} (865 cm⁻¹),²⁸ and lattice vibrations (140 and 110 cm⁻¹). The formation of IF_7^{2-} and IOF_5^{2-} can be easily rationalized. Iodine trifluoride has a tendency to disproportionate to I2 and IF5,3 and IF5 is known28 to react with excess F^- to give IF_7^{2-} . Similarly, a trace of moisture will

Table 4. Calculated, Observed, and Predicted Bond Lengths for IF_4^- and IF_5^{2-}

		bond dis	stances (Å)	
		cal		
	obsd	HF/ECP/DZP	LDFT/DZVP	predicted
$F_4^{-}(D_{4h})$ $F_5^{2-}(D_{5h})$	2.007 ^a	1.994 2.094	2.069 2.163	2.11

^a Reference 23.

Т

Т

result in partial hydrolysis of IF_6^- to give IOF_4^- , which in turn is known to give with excess F^- the IOF_5^{2-} dianion.²⁸ These impurities had been formed already during the original preparation⁴ and were not generated during sample storage.

Vibrational Spectra and Electronic Structure Calculations. The vibrational spectra of IF_5^{2-} are summarized in Table 3 and were assigned by analogy with those established for the isoelectronic XeF₅⁻ anion.^{1,29} The only difference is the reversal of the identity of v_5 and v_6 in the E_2 block, based on the results of the potential energy distribution (see below). The spectra of IF_5^{2-} and XeF₅⁻ are very similar. They exhibit the expected frequency decreases for IF_5^{2-} due to the additional negative charge and, to a lesser degree, the lower nuclear charge at iodine, which enhance the X(δ +)-F(δ -) polarity of the bonds. Generally, highly ionic bonds are longer and weaker than highly covalent bonds because the effect of decreasing covalency outweighs that from increased Coulombic attraction. Analogous general frequency and bond weakening effects are also observed on going from IF₄⁻ (see Table 2) to IF₅²⁻ (see Table 3).

The geometry and the vibrational spectra of IF_5^{2-} and XeF_5^{-} were studied by electronic structure calculations at the HF and LDFT levels. To evaluate the reliability of our computational methods, the well-known IF_4^{-} geometry²³ and spectra² were calculated first. As can be seen from Tables 2 and 4, the HF/ECP/DZP method gave the better results. For IF_4^{-} , the bond length calculated at the HF/EDP/DZP level is only 0.013 Å shorter than the observed one.²³ For IF_5^{2-} , the minimum energy structure at both the HF and LDFT levels was pentagonal planar with D_{5h} symmetry. Assuming a similar correction as for IF_4^{-} , the bond length of IF_5^{2-} is predicted to be 2.11 Å. This bond length increase of 0.09 Å relative to IF_4^{-} can be explained by the increased polarity of the bonds (see above) and increased

⁽²⁷⁾ National Bureau of Standards (U.S.) Monograph no. 25, Section 3, 1964.

⁽²⁸⁾ Christe, K. O.; Wilson, W. W.; Drake, G. W. Unpublished results.

⁽²⁹⁾ Christe, K. O.; Dixon, D. A.; Mahjoub, A. R.; Mercier, H. P. A.; Sanders, J. C. P.; Seppelt, K.; Schrobilgen, G. J.; Wilson, W. W. J. Am. Chem. Soc. **1993**, 115, 2696.

Table 5. Symmetry Force Constants and Potential Energy Distribution of D_{5h} IF₅²⁻ and XeF₅⁻ Calculated from the Scaled HF/ECP/DZP Second Derivatives

]	$1F_5^{2-a}$				XeF5 ^{- b}	
	freq, c	m^{-1}			freq,	cm^{-1}		
	obsd	calcd	sym force consts ^c	PED (%)	obsd	calcd	sym force consts ^c	PED (%)
A_1'	474	468	$F_{11} = 2.445$	100(1)	502	503	$F_{11} = 2.835$	100(1)
A_2''		307	$F_{22} = 0.529$	100(2)	278	305	$F_{22} = 0.480$	100(2)
E_1'	335	342	$F_{33} = 0.867$	70(3), 20(4)	455	454	$F_{33} = 1.707$	98(3), 2(4)
			$F_{34} = -0.030$				$F_{34} = -0.181$	
	245	249	$F_{44} = 1.886$	80(4), 20(3)	278	276	$F_{44} = 1.952$	98(4), 2(3)
E_2'	322/339	335	$F_{55} = 1.735$	74(5), 26(6)	423	425	$F_{55} = 1.982$	92(5), 8(6)
-			$F_{56} = 0.115$				$F_{56} = 0.122$	
	366/396	366	$F_{66} = 1.316$	74(6), 26(5)	377	378	$F_{66} = 1.794$	92(6), 8(5)
$E_2^{\prime\prime}$		100	$F_{77} = 0.260$	100(7)		107	$F_{77} = 0.266$	100(7)
in	ternal force cons	stants						
		fr	1.529				2.043	
		frr	0.035				0.137	
		frr'	0.423				0.260	

^{*a*} Empirical scaling factors of 0.9606 and (0.9606)² were used for the frequencies and force constants, respectively. ^{*b*} Scaling factors: 0.87322 and (0.87322)². ^{*c*} Stretching constants in mdyn/Å, deformation constants in mdyn Å/rad², and stretch–bend interaction constants in mdyn/rad.

Table 6. G Matrix^{*a*} for Pentagonal Planar XeF_5^- of Symmetry D_{ac}

D_{5h}	
A_1'	$G_{11} = \mu_v = 5.2637 \times 10^{-2}$
A_2''	$G_{22} = (5/r^2)(\mu_y + 5\mu_x) = 1.1201 \times 10^{-1}$
E_1'	$G_{33} = \mu_y + 5u_x/2 = 7.1679 \times 10^{-2}$
	$G_{34} = (5^{3/2}\mu_x)/(4r\sin\alpha) = 1.1123 \times 10^{-2}$
	$G_{44} = (1/r^2)(5\mu_v \sin^2 2\alpha + \mu_x) = 2.4334 \times 10^{-2}$
E_2'	$G_{55} = \mu_{\rm v} = 5.2637 \times 10^{-2}$
	$G_{56} = 0$
	$G_{66} = (1/r^2)(4\mu_v \sin^2 \alpha) = 4.7026 \times 10^{-2}$
E_2''	$G_{77} = (3 - 5^{1/2})(5/2r^2)\mu_v = 2.4823 \times 10^{-2}$

^{*a*} The following geometry and masses were used for the calculation of the **G** matrix: r = 2.0124 Å and $\alpha = 72^{\circ}$; $m_x = 131.292$; $m_y = 18.998$.

ligand–ligand repulsion due to a decrease of the F–I–F bond angle from 90° in IF_4^- to 72° in IF_5^{2-} .

The symmetry force constants and potential energy distributions (PED) were calculated for IF_5^{2-} and XeF_5^{-} by using the scaled HF/ECP/DZP frequencies (see Table 5). Since we were unable to duplicate with our computer calculations the previously published, hand calculated, out-of-plane deformation force constants,^{1,29} the originally given¹ G matrix was reexamined and found to contain incorrect multiplicity factors for G_{22} and G_{77} . The corrected **G** matrix for XeF_5^- is given in Table 6 and was verified by the machine methods. A typographical error for a sign in one of the originally published1 symmetry coordinates, i.e., (S_{5b}) should read $(2/5)^{1/2}[\sin 2\alpha(\Delta r_2 - \Delta r_5) - \Delta r_5)$ $\sin\alpha(\Delta r_3 - \Delta r_4)$] has already been corrected elsewhere.²⁹ The revised force constant, $F_{22} = 0.480$ mdyn Å/rad², for the symmetric out-of-plane deformation of XeF5⁻ is now in much better agreement with our expectation. The deformations out of the highly crowded pentagonal plane should possess significantly smaller force constants than the corresponding in-plane deformations.

As can be seen from Tables 3 and 5, the results from the normal coordinate analyses confirm the identities of these pentagonal planar anions. The general fit between the calculated and observed frequencies is very good. The only remaining minor ambiguities in the normal coordinate analyses are the following: (i) For XeF₅⁻, the exact location of the infrared active, in-plane deformation mode, v_4 , is somewhat uncertain. On the basis of the calculations, its frequency is similar to, but its infrared intensity is much lower than, those of the out-of-plane umbrella deformation mode, v_2 . Therefore, we assume that v_4 is hidden under the v_2 band. (ii) For IF₅²⁻, the location

of the infrared active, out-of-plane umbrella deformation mode was obscured. In the Cs₂IF₅ spectrum, the strong absorption due to the free CsF obscured this region, and in the [N(CH₃)₄]₂-IF₅ spectrum, the presence of an IF₄⁻ impurity and the broadness of the ν_3 mode of IF₅²⁻ interferred. In the Raman spectrum of Cs₂IF₅, one of the two E₂' bands exhibits a splitting, similar to those observed for these modes in XeF₅⁻. In Table 3, this splitting was tentatively assigned to ν_5 because this requires a smaller splitting. However, if one assumes ν_6 to be split intead of ν_5 , the average of the 396 and 339 cm⁻¹ components would result in much better agreement with the calculated frequency of 366 cm⁻¹ and the [N(CH₃)₄]₂IF₅ spectrum, in which ν_6 of IF₅²⁻ probably coincides with a cation band at 366 cm⁻¹.

An inspection of the potential energy distributions for IF_5^{2-} and XeF_5^- (see Table 5) shows that the E modes of XeF_5^- are considerably more characteristic than those of IF_5^{2-} . This is due to the increased bond polarity in IF_5^{2-} , which lowers preferably the stretching force constant and makes its value more similar to those of the deformation constants. This enhances the mixing of the normal modes in IF_5^{2-} and, in its E_2' block, results in the higher frequency mode becoming mainly the bending motion. A further consequence of the larger bond polarity in IF_5^{2-} is the increased coupling of the stretching motions involving opposite bonds (frr' = 0.42 mdyn/Å). This large frr' value is responsible for the low frequency of the antisymmetric stretching mode, $\nu_3(E_1')$, which respresents the reaction coordinate for the loss of an F⁻ ion. This finding is in accord with the observation that $\mathrm{IF}_5{}^{2-}$ readily loses an F^- ion to give IF_4^- .

The stability of the hypothetical IF_6^{3-} anion was also examined by ab initio methods. The four most likely geometries of IF_6^{3-} are shown in Figure 3. Like IF_5^{2-} , this anion contains two free valence electron pairs on iodine. If both electron pairs are sterically active, the most likely structure is the one with D_{3d} symmetry, in which the two more repulsive free pairs avoid each other as much as possible by occupying the axial trans positions of a bicapped octahedron. If, on the other hand, one of the two free valence electron pairs on iodine is sterically inactive, i.e., occupies an A_{1g} or s orbital, only p and d orbitals of iodine are involved in the bonding and, therefore, the resulting structures are governed by repulsion effects, and, as in transition metal heptafluorides,³⁰ the energetically most favored structures become the monocapped octahedron of $C_{3\nu}$ symmetry and the

Figure 3. Most likely geometries of the IF_6^{3-} trianion and their spontaneous decomposition modes.

monocapped trigonal prism of C_{2v} symmetry. The pentagonal bipyramid of C_{5v} symmetry is slightly higher in energy, but was also considered.^{31–33}

The structures of all four geometries of IF_6^{3-} were calculated at the restricted Hartree–Fock (RHF) self-consistent-field level, using effective core potentials³⁴ and the corresponding valence basis sets of Stevens, Basch, Krauss, and Jasien.³⁵ The basis set was augmented with a diffuse s + p shell³⁶ and a d polarization function³⁷ on each atom. All calculations were performed using the GAMESS quantum chemistry package.²⁰ Since the HOMO of the D_{3d} and C_{3v} structures is a half-filled degenerate orbital pair, Jahn–Teller distortion to lower symmetry is anticipated. Therefore, the initial geometries of these

(31) Kepert, R. J. Inorganic Stereochemistry; Springer: Berlin, 1982.
(32) Hoffmann, R.; Beier, B. F.; Muetterties, E. L.; Rossi, A. R. Inorg. Chem. 1977, 16, 511.

(33) Gillespie, R. J.; Hargittai, I. *The VSEPR Model of Molecular Geometry*; Allyn and Bacon, A Division of Simon & Schuster, Inc.: Needham Heights, MA, 1991.

(34) (a) Melius, C. F.; Goddard, W. A. Phys. Rev. A **1974**, 10, 1528. (b) Kahn, L. R.; Baybutt, P.; Truhlar, D. G. J. Chem. Phys. **1976**, 65, 3826. (c) Krauss, M.; Stevens, W. J. Annu. Rev. Phys. Chem. **1985**, 35, 357.

(35) (a) Stevens, W. J.; Basch, H.; Krauss, M. J. Chem. Phys. **1984**, 81, 6026. (b) Stevens, W. J.; Basch, H.; Krauss, M.; Jasien, P. Can. J. Chem. **1992**, 70, 612.

(36) The exponents of the diffuse s + p shells for iodine and fluorine are 0.0368 and 0.1076, respectively.

(37) The d function exponents for iodine and fluorine are 0.266 and 0.8, respectively.

conformations were distorted to C_s symmetry by slight elongation of one pair of trans fluorine ligands. For each of the four conformations, geometry optimization led to the dissociative loss of one or two fluoride ligands. Specifically, optimization of the C_{2v} conformation and the distorted D_{3d} and C_{3v} structures led to formation of square-planar [IF₄]⁻ and two fluoride anions, whereas optimization of the C_{5v} structure led to formation of pentagonal planar [IF₅]²⁻ and one fluoride anion. Thus, none of the four conformations were found to be a local minimum. Although more extensive calculations are desirable to definitively rule out the stability of the [IF₆]³⁻, the present results strongly indicate that the free anion is not a stable species. However, the possibility cannot be ruled out that IF₆³⁻ might exist in salts where suitable counterions could provide sufficient lattice energy for its stabilization.

Conclusions

The successful synthesis of a second example of a pentagonal planar AX₅ species demonstrates that XeF₅⁻ is not a unique case, and that other examples of AX₅ molecules of D_{5h} symmetry, such as TeF₅³⁻, AuF₅²⁻, or PtF₅³⁻, might also exist. Although IF₅²⁻ had been prepared 30 years ago,³ its nature had not been recognized until now. The greatly delayed recognition of this unusual anion parallels the discovery¹ of XeF₅⁻, which had originally been mistaken for octahedral XeF₆²⁻.³⁸⁻⁴⁰

Acknowledgment. This paper is dedicated to Professor Neil Bartlett on the occasion of his 65th birthday. The authors thank Drs. M. Petrie, K. Chaffee, P. Jones, and N. Kawai for their help with the NMR, X-ray diffraction, DSC, and Raman data, respectively, and Dr. S. Rogers and Prof. G. Olah for their active support. The work at the Air Force Research Laboratory was financially supported by the Propulsion Directorate and Office of Scientific Research of the U.S. Air Force, that at USC by the National Science Foundation, and that at PNNL by the U.S. Department of Energy. Scholarships from the Deutsche Forschungsgemeinshaft (R.Z.G.) and the National Research Council (G.W. D.) are gratefully acknowledged.

JA980057+

⁽³⁸⁾ Spitzin, V. I.; Kiselev, Yu. M.; Fadeeva, N. E.; Popov, A. I.; Tchumaevsky, N. A. Z. Anorg. Allg. Chem. **1988**, 559, 171.

⁽³⁹⁾ Kiselev, Yu. M.; Goryachenkov, S. A.; Martynenko, L. I.; Spitsyn, V. I. Dokl. Akad. Nauk SSSR 1984, 278, 881.

⁽⁴⁰⁾ Kiselev, Yu. M.; Fadeeva, N. E.; Popov, A. I.; Korobov, M. V.; Nikulin, V. V.; Spitsyn, V. I. *Dokl. Akad. Nauk SSSR* **1987**, *295*, 378.